Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sea turtles are one taxon of high conservation concern that encounter many pathogens, but their disease ecology is understudied, hindering our ability to predict impacts of disease on population viability. Fibropapillomatosis (FP) is a neoplastic tumor-forming disease that has been documented in all sea turtle species, with an especially high prevalence in green turtlesChelonia mydas.Here, we use Hawaiian green turtles (honu) as a study system to examine the roles of immunogenetic diversity and transcriptional modulation in sea turtle disease responses. Specifically, we quantified gene expression profiles associated with FP and characterized host diversity of major histocompatibility complex class I (MHCI) immune loci. We found 65 genes differentially expressed in blood between clinically healthy (n = 5) and FP-afflicted turtles (n = 5) with enriched biological processes of the innate immune system, aligned with expectations of reptilian immune systems and active disease resistance. Our results also suggest a role for disease tolerance in response to FP, as evidenced by enriched biological processes related to regulation of immune and metabolic homeostasis, increase in cellular detoxification, and increased tissue repair mechanisms. Honu (n = 89) had 23 unique MHCI alleles belonging to 3 distinct functional supertypes, but none were significantly associated with FP; this could be a result of intrinsic demographic properties of the population or reflect a lesser/differing role of the reptilian adaptive immune system. Our study advances the understanding of reptilian disease response and evolutionary mechanisms underlying immunogenetic diversity, both of which are important for promoting the adaptive potential of species vulnerable to extinction.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Industry leaders emphasize that engineering students' technical communication and writing skills must be improved. Despite various institutional efforts, which include technical communication courses or engineering design projects aimed at enhancing students’ communication abilities, many believe there has been only slow improvement in this area. There has also been a dearth of longitudinal studies that examine the development of engineering students’ technical communication competencies from undergraduate to industry. This paper aims to contribute to this area through the creation of a rubric that specifically examines the writing competencies and technical communication ability of engineering students. This paper is part of a larger, NSF-funded research study that examines the quality of students’ written and oral communication skills and seeks to understand their relationship to the students’ spatial abilities. First-year engineering students in their second semester at a large R1 Midwestern university were examined. Students were tasked with creating a written report responding to a set of questions that asked about their team-based engineering design project completed in their first semester. As this occurred months prior, this non-graded report became a reflection on their experience and innate abilities. While low stakes, it mimicked a more authentic writing experience students encounter in industry. Students' responses were examined collaboratively by an interdisciplinary team which created a rubric through an iterative process. This rubric was distributed to the interdisciplinary team and outside evaluators composed of individuals in industry and engineering faculty. An inter-rater reliability analysis was conducted to examine levels of agreement between the interdisciplinary team and outside evaluators, and implications of this inter-rater reliability score and the process of rubric application were documented. Results of this paper include details on the development of a rubric that examine students’ technical communication and writing skills. Traditional rubrics utilized by engineering faculty usually address an entire project for engineering students, which includes students' content knowledge, writing capabilities, and the requirements of the project. Such rubrics are often used to provide feedback to students and evaluation in the form of grades. The narrower focus of the rubric being developed here can provide insights into communication and writing competencies of engineering students. Scores secured through the use of this rubric will aid in the research study’s goal of finding correlations between engineering students’ communication skills and spatial abilities (assessed outside of this current effort). Spatial ability has been well-documented as an effective indicator of success in STEM, and interventions have been developed to support development in students with weaker spatial skills. 23, 24This has prompted this research to explore links between spatial skills and communication abilities, as validated spatial interventions may help improve communication abilities. These current results may also provide unique insights into first-year engineering students’ writing competencies when reporting on a more authentic (non-graded) engineering task. Such information may be useful in eventually shaping guidance of students’ communication instruction in hopes of better preparing them for industry; this is the focus of a planned future research study.more » « less
An official website of the United States government

Full Text Available